
Have you ever felt
like a robot?

Try adding 23 ports to a bridge...

Let’s see...

Google Geolocation API
{
 "homeMobileCountryCode": 310,
 "homeMobileNetworkCode": 410,
 "radioType": "gsm",
 "carrier": "Vodafone",
 "considerIp": "true",
 "cellTowers": [
 // See the Cell Tower Objects section below.
],
 "wifiAccessPoints": [
 // See the WiFi Access Point Objects section below.
]
}

Google Geolocation API - only WiFi
{
 "wifiAccessPoints": [
 {
 "macAddress": "00:25:9c:cf:1c:ac",
 "signalStrength": -43,
 },
 {
 "macAddress": "00:12:23:00:56:78",
 "signalStrength": -62,
 },
......
]
}

Google Geolocation API - the result
{
 "location": {
 "lat": 51.0,
 "lng": -0.1
 },
 "accuracy": 1200.4
}

https://www.google.com/maps/?q=51.0,-0.1

And finally we can do:

Geolocation - summary of the steps

1. Run the scan on the wireless interfaces
2. Prepare the JSON query with few empty MACs
3. Copy-paste the MAC addresses and signals
4. Run the API query, open the result
5. Copy-paste the coordinates to HTTP link

Geolocation - the script

Few questions we’re going to answer

● Where can we have the scripts on the router?
● What can we do with the scripts?
● How can we run a script?
● How can we make the script nice and clear?

The scripts - where?

The scripts - where? - in the CLI!
:foreach lease in=[/ip dhcp-server lease find] do={
 :local mac [/ip dhcp-server lease get $lease mac-address];
 :local name [/ip dhcp-server lease get $lease host-name];
 :local ip [/ip dhcp-server lease get $lease address];
 :put "MAC address: $mac, IP: $ip, host name: $name"
}

The scripts - where? - in the CLI!

The scripts - where? - in the CLI!

The scripts - where? - in the file!

The scripts - where? - in the file!

The scripts - where? - in the scripts!

The scripts - where? - in the scripts!

The scripts - where? - other places

What can we do?

What can we do? - the magic :commands

:for i from=440 to=880 step=40 do={
 :put “Now beeping at $i MHz”;
 :beep frequency=$i length=1s;
 :delay 1s;
}

The :commands controlling the flow

● :if
● :for
● :foreach
● :do … while
● :while … do
● :delay
● :return

The :commands working on variables

● :local
● :global
● :set
● :typeof
● :tonum, :toarray, :tobool, :tostr

The :commands interacting with user

● :put
● :log
● :beep
● :blink

The :commands working on strings

● :find
● :pick
● :len

:local text “abcde”
:put [:pick $text 1 [:find $text “d”]]

bc

Other useful RouterOS commands

● /tool e-mail send
● /tool sms send
● /tool fetch
● /ping
● /file get … contents
● /file set … contents=…
● /tool snmp-get

How can we run a script?

Our example script

:if ([/system leds get [find] type]="off") do={
 /system leds set [find] type=on;
} else={
 /system leds set [find] type="off";
}

How can we run a script?
-> scheduler

How can we run a script? -> triggers

How can we run a script? -> mode button

How can we run a script? -> FTP upload file.auto.rsc

How can we run a script? -> SMS to the router
:cmd SECRET script NAME

How can we run a script? -> SNMP GET or SET

● We need SNMP community with write access (even for
GET)

● We need to find the Script OIDs with snmpwalk
● Script can report a value with :return (string only)

$ snmpwalk -v2c -cpublic 192.168.88.1 1.3.6.1.4.1.14988.1.1.8

iso.3.6.1.4.1.14988.1.1.8.1.1.2. 1 = STRING: "script1"

iso.3.6.1.4.1.14988.1.1.8.1.1.2. 2 = STRING: "script2"

iso.3.6.1.4.1.14988.1.1.8.1.1.3.1 = INTEGER: 0

iso.3.6.1.4.1.14988.1.1.8.1.1.3.2 = INTEGER: 0

How can we run a script? -> SNMP GET

Variables

Using variables

● :local x - variable $x visible only inside this “scope”
● :global x - variable $x visible everywhere (in the System

Environment”)

● :local x 1 - setting the variable value when initializing
● :set $x 1 - setting the variable name anywhere else

Variables - arrays
:foreach lease in=[/ip dhcp-server lease find] do={
 :local mac [/ip dhcp-server lease get $lease mac-address];
 :local name [/ip dhcp-server lease get $lease host-name];
 :local ip [/ip dhcp-server lease get $lease address];
 :put "MAC address: $mac, IP: $ip, host name: $name"
}

Variables - custom arrays

:local colors [:toarray “”]
:set ($colors->”sun”) “yellow”
:set ($colors->”sky”) “blue”
:set ($colors->”grass”) “green”

:put “The color of the grass is:”
:put ($colors->”grass”)

Variables - custom arrays

:foreach element,color in=$colors do={
 :put “$element is $color”
}

grass is green
sky is blue
sun is yellow

Functions

Functions - how to define them

:global function do={
 :return "This is the result!"
}

Functions - how to run them

Functions - how NOT TO run them

We need to RUN the function.
:put $function - wrong!
:put [$function] - right!

Functions - how to pass arguments

:global exp do={
 :local result 1;
 :for i from=1 to=$2 do={
 :set $result ($result*$1);
 }
 :return $result
}

:put [$exp 2 8]

Functions - running them with arguments

Functions - and the local/global scopes

● Functions can be defined as local
● Better to define functions as global
● Functions used by other functions NEED TO be defined

as global

:global function1 do={...}

:global function2 do={
 :global function1;
 ... (using [$function1])
}

:local function1 do={...}

:local function2 do={
 :local function1;
 ... (using [$function1])
}

Functions - how I use them
:global pushover do={
:global urlEncode;
 :if ([:typeof $message]!="nothing") do={
 :local api "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";
 :local user "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";
 :local urlmessage [$urlEncode $message];
 :local string "token=$api&user=$user&message=$urlmessage";
 /tool fetch mode=https url="https://api.pushover.net/1/messages.json"
http-method=post http-data="$string";
 }
}

$pushover message=”There is a problem with the router!”

Functions - something special

:global input do={
 :return
}

:put “Please provide the value for x:”
:local x [$input]
:put “Please provide the value for y:”
:local y [$input]
:put “$x*$y=$($x*$y)”

Functions - something special

Playing battleships over BGP
● Introduced by Ben Cox: https://blog.benjojo.co.uk/post/bgp-battleships

Questions?

